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 1 

Abstract 28 
 29 

The importance of precipitating mesoscale convective systems (MCSs) has been 30 

quantified from TRMM precipitation radar and microwave imager retrievals.  MCSs 31 

generate more than 50% of the rainfall in most tropical regions.  MCSs usually have 32 

horizontal scales of a few hundred kilometers (km); therefore, a large domain with 33 

several hundred km is required for realistic simulations of MCSs in cloud-resolving 34 

models (CRMs). Almost all traditional global and climate models do not have adequate 35 

parameterizations to represent MCSs.  Typical multi-scale modeling frameworks 36 

(MMFs) may also lack the resolution (4 km grid spacing) and domain size (128 km) to 37 

realistically simulate MCSs.  38 

 39 

In this study, the impact of MCSs on precipitation is examined by conducting model 40 

simulations using the Goddard Cumulus Ensemble (GCE) model and Goddard MMF 41 

(GMMF).  The results indicate that both models can realistically simulate MCSs with 42 

more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to 43 

those simulations with fewer grid points (i.e., 32 and 64) and low resolution (4 km).  44 

The modeling results also show the strengths of the Hadley circulations, mean zonal 45 

and regional vertical velocities, surface evaporation, and amount of surface rainfall are 46 

weaker or reduced in the GMMF when using more CRM grid points and higher CRM 47 

resolution.  In addition, the results indicate that large-scale surface evaporation and 48 

wind feed back are key processes for determining the surface rainfall amount in the 49 

GMMF.  A sensitivity test with reduced sea surface temperatures shows both reduced 50 

surface rainfall and evaporation.   51 
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1. Introduction 52 

 53 

Continued advancements in computational technology now allow general circulation 54 

models (GCMs) to begin to resolve individual convective clouds and convective 55 

systems.  Though still computationally very demanding (~ a million times more than a 56 

traditional GCM), global cloud-resolving (or cloud-permitting) models (GCRMs) with 57 

horizontal grid spacing from 3.5 to 14 km have been successfully used in many short-58 

term atmospheric studies [e.g., Tomita et al., 2005; Satoh et al., 2005, 2008, 2014; 59 

Putman and Suarez, 2011; Miyamoto et al., 2013; Skamarock et al., 2014; Yashiro et 60 

al., 2016] as well as a long-term (20 years with 14 km resolution) climate simulation 61 

[Kodama et al., 2015].  Another more economical approach to global cloud-resolving 62 

(or cloud-permitting) modeling is the multi-scale modeling framework (MMF) wherein 63 

conventional cloud parameterizations are replaced with a cloud-resolving model 64 

(CRM) in each grid column of a GCM [Grabowski and Smolarkiewicz, 1999; 65 

Khairoutdinov and Randall, 2001; Khairoutdinov et al., 2005; Randall et al., 2003; 66 

Tao et al., 2009 and papers listed in Table 1].  An MMF can explicitly simulate deep 67 

convection, cloudiness and cloud overlap and cloud-radiation interactions at the 68 

resolution of a CRM.  It expands traditional CRM modeling to a global coverage and 69 

enables two-way interactions between the cloud and large scales. 70 

 71 

The first MMF (called SPCAM1) was developed at Colorado State University (CSU) 72 

[Khairoutdinov and Randall 2001; Randall et al., 2003], using the System for 73 

                                                        
1
    SPCAM stands for superparameterized community atmosphere model. 
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Atmospheric Modeling (SAM, a CRM) to replace the convection parameterizations in 74 

the National Center for Atmospheric Research (NCAR) Community Atmosphere 75 

Model (CAM).  It has been used to study a wide variety of atmospheric phenomena 76 

and a review of the major applications can be found in Randall et al. [2016].  A second 77 

MMF2 [Tao et al., 2009] has been developed at Goddard with a different GCM [the 78 

Goddard Earth Observing System (GEOS) model] and a different CRM [the Goddard 79 

Cumulus Ensemble model (GCE)].  Recently, a new Goddard 4ICE (cloud ice, snow, 80 

graupel and hail) scheme was implemented into the GMMF [Chern et al., 2016].  The 81 

4ICE scheme improves the GMMF-simulated cloud ice spatial patterns and amount as 82 

compared to CloudSat estimates.  It also shows improved performance with respect to 83 

the land-ocean contrast in precipitating cloud frequencies and microphysics in relations 84 

to the TRMM products and results from a GCRM [Matsui et al., 2016].  GMMF 85 

simulations with the improved 4ICE scheme were incorporated into a satellite-retrieval 86 

database for the cross-track scanning sensors of the Global Precipitation Measurement 87 

(GPM) constellation satellites [Kidd et al., 2016].  88 

 89 

Khairoutdinov and Randall [2003] tested the sensitivity of their CRM (SAM) to 90 

domain size (from 512 to 9192 km) and horizontal resolution (from 250 m to 32 km).  91 

Their 20-member ensemble runs were forced by large-scale advective tendencies in 92 

temperature and water vapor from an intensive observation period conducted over 93 

Oklahoma in 1997 at the ARM/SGP (DOE Atmospheric Radiation Measurement 94 

Program / Southern Great Plains) site.  They found that the mean simulation statistics 95 

                                                        
2
     It is called the Goddard MMF or GMMF. 
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had very little sensitivity to the model domain size.  They also found that the simulated 96 

hydrometeor-mixing rate and cloud fraction profiles had virtually no sensitivity to grid 97 

resolution as long as it was finer than 4 km.   Their conclusions are one of the main 98 

reasons why nearly all MMFs applied a 4-km grid in their embedded CRMs (See Table 99 

1). 100 

 101 

The importance of mesoscale convective systems (MCSs) on tropical precipitation was 102 

identified [Houze, 1982, 1989] and quantified from TRMM precipitation radar and 103 

microwave imager retrievals [Nesbitt et al., 2006] and CRMs [see Table 1 in Cotton et 104 

al., 1995].  MCSs generate more than 50% of the rainfall in most tropical regions.  105 

Typical MCSs have a horizontal scale of a few hundred kilometers.  Johnson et al. 106 

[2002] used large-scale advective tendencies for temperature and water vapor obtained 107 

from TOGA COARE (the Tropical Ocean Global Atmosphere – Coupled Ocean 108 

Atmosphere Response Experiment) to force the GCE.  Their results indicated that a 109 

domain size of at least 512 km is needed to adequately contain “meso-scale convective 110 

features” and to replicate both the eastward and westward movements of the observed 111 

precipitating systems.  Tompkins [2000] and Petch and Gray [2001] also indicated the 112 

importance of mesoscale organization in their TOGA COARE CRM simulations.  113 

Computationally, it is still quite expensive to use a 512 km domain size with 1 or 2 km 114 

grid spacing in the embedded CRMs of an MMF.  In addition, Ooyama  [2001] used a 115 

two-dimensional non-hydrostatic model to test the sensitivity of an isolated convective 116 

cloud and a squall line to resolution (1, 2 and 4 km).  His results suggested that a 117 
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resolution of 1 km or less, or marginally 2 km, is needed to realistically simulate 118 

precipitating clouds and squall lines.  119 

 120 

Table 1 shows a list of MMF papers and their model configurations, such as their GCM 121 

resolution, the resolution and number of grid points in their CRMs, and length of model 122 

integration.  Most MMFs used 32 or 64 grid points with 4 km grid spacing in their 123 

embedded CRMs.   Only a few MMF studies [e.g., Marchand and Ackerman, 2010; 124 

Pritchard et al., 2011] used 1 km grid spacing.  Please see Chern et al. [2016] and 125 

Randall et al. [2016] for a review of these MMF papers in terms of their development, 126 

improvements and applications. 127 

 128 

In this study, GMMF sensitivity tests were conducted to examine the impact of number 129 

of CRM grids and their resolution on model simulations.  Specifically, the physical 130 

processes that can cause excessive rainfall over the West Pacific and other tropical 131 

oceans are the focus of the study.  The paper has the following organization. Section 2 132 

describes the GMMF, the Goddard microphysical schemes, and sensitivity tests.  133 

Section 3 shows the results of the numerical experiments assessing the impact of model 134 

configuration on surface rainfall.  Section 4 offers a summary and conclusions. 135 

 136 

2. Model description and numerical experiments 137 

 138 

2.1 The Goddard MMF (GMMF) 139 

 140 
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The GMMF used in this study is the same as in Chern et al. [2016].  Briefly, the moist 141 

processes, radiation, and turbulence schemes in the GEOS global atmospheric model 142 

have been replaced with a two-dimensional (x-z) GCE [Tao et al., 2014].  The GEOS 143 

model was configured to run with 2 x 2.5 (latitude x longitude) horizontal grid 144 

spacing with 48 vertical layers stretching from the surface to 0.4 hPa.  In this study, a 145 

series of simulations were carried out with differing numbers of GCE grid columns 146 

(i.e., 32, 64, and 256) and grid spacing (i.e., 1, 2, and 4 km).  All embedded GCEs have 147 

44 vertical layers and time steps of 3, 6, and 12 seconds for model resolutions of 1, 2, 148 

and 4 km, respectively.  In the GMMF, the GCE is in a height coordinate, and the model 149 

height does not change with time (different from SPCAM’s approach).  Therefore, the 150 

vertical levels are slightly different between GEOS and GCE to ensure the model top 151 

height in the GCE is lower than that of GEOS.  Prescribed sea surface temperatures 152 

(SSTs) from NOAA OI weekly SSTs [Reynolds et al., 2007] were used, while the initial 153 

atmospheric conditions were taken from the ECMWF ERA-Interim reanalysis [Dee et 154 

al., 2011] at 0000 UTC 1 December 2006.  The first month was considered as spin-up, 155 

and only results from 2007 and 2008 were depicted in this paper.  In this study, the 156 

surface fluxes are computed from the GCM grids based on the GCM’s lowest-level 157 

fields and are used as constant fluxes (horizontally uniform) in the embedded CRM.  158 

The representation of convective momentum transport (CMT) in an MMF has been a 159 

long-standing challenge due to the 2D nature of the embedded CRMs.  The GMMF is 160 

like other traditional MMFs in only considering the thermodynamic feedback.   161 

 162 
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Most CRM microphysical schemes include two liquid (cloud water and rain) and three 163 

classes of ice particles (cloud ice, snow and graupel or hail) [see Table 1 in Tao et al., 164 

2016].  However, graupel and hail can co-exist in real clouds.  Therefore, the Goddard 165 

3ICE scheme was improved by including both graupel and hail (called the Goddard 166 

4ICE scheme, see Lang et al. [2014]).  The Goddard 4ICE scheme was also 167 

implemented into the NASA Unified Weather Research and Forecasting model (NU-168 

WRF), which significantly improved the simulation of heavy rainfall associated with a 169 

mid-latitude squall line [Tao et al., 2016].  The 4ICE scheme improves the GCE and 170 

NU-WRF radar signatures in two ways:  1) it eliminates the occurrence of elevated 171 

reflectivity maxima (most likely via higher hail fall speeds) and still works well for less 172 

intense cases, and 2) with its ability to produce high reflectivity values, it eliminates 173 

the need for graupel and snow to produce those values, allowing for more “stable” 174 

snow/graupel size mappings and mappings better suited to produce reflectivity values 175 

with the highest occurrence.  This 4ICE scheme is used in both GCE and GMMF for 176 

this study. 177 

 178 

2.2 Model configuration and sensitivity tests 179 

 180 

Table 2 lists four GMMF sensitivity tests.  The first two sensitivity tests (M32 and 181 

M64) used 32 and 64 CRM grid columns with 4 km grid spacing, respectively.  These 182 

model configurations are frequently used in MMF simulations (see Table 1).  The next 183 

two sensitivity tests (M128 and M256) used 128 and 256 CRM grid columns with 2 184 

and 1 km grid spacing, respectively.  The embedded CRMs have an east-west 185 

orientation.  Note that the M64, M128 and M256 configurations have the same domain 186 
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size (256 km), which is similar to the GEOS longitudinal grid spacing (2.5o).  Most 187 

previous MMF studies (Table 1) used embedded CRMs with a domain size of 128 km 188 

and 4 km grid spacing, which matches and is the justification for the M32 simulation.  189 

It is worth noting that the majority of organized tropical convective systems are over 190 

100 km in size [Nesbitt et al., 2006].  These two tests are designed to examine whether 191 

simulated convection is more or less organized than the two tests with less grid 192 

columns. 193 

 194 

In addition to the GMMF simulations, four CRM (GCE) simulations (i.e., C32, C64, 195 

C128 and C256 in Table 2) are conducted.  The same CRM configurations used in the 196 

GMMF runs are used in these CRM simulations.  Large-scale advective forcing in 197 

temperature and water vapor is used to derive these CRM simulations.  These off-line 198 

(non interactive with GEOS) simulations are used to examine the sensitivity of CRM 199 

configurations on surface precipitation and the degree of convective organization. 200 

 201 

3. Results 202 

 203 
3.1 CRM simulations 204 
 205 

The GCE is used to examine the sensitivity of stand-alone 2D CRM simulations 206 

without cloud-large scale interaction to horizontal resolution and domain size.  The 207 

observed large-scale forcing in temperature and water vapor from 20 to 30 November 208 

2011 during the Dynamics of the Madden-Julian Oscillation (DYNAMO, Yoneyama et 209 

al., 2013) field campaign is used to drive the simulations (i.e., C32, C64, C128 and 210 

C256 case).  Surface rainfall retrieved by the ground-based S-band dual-polarized (S-211 
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POL) radar located at Gan Island was used to constrain the forcing.  Since there was 212 

only a single sounding site at Gan Island, ECMWF global analyses were used to 213 

provide temperature, water vapor and wind profiles near the Gan site.   Table 3 shows 214 

the convective, stratiform, and total rainfall, its stratiform percentage, temporal 215 

correlation as well as the domain mean rainfall bias for these four simulations.  The 216 

convective and stratiform separation method considers the surface rainfall intensity, 217 

middle-level vertical velocity, and low-level cloud water (100% saturated with 218 

presence of cloud water).  Please see Tao et al. [1993] and Lang et al. [2003] for more 219 

details on the separation method.  All of the runs produced similar rainfall totals (from 220 

12.86 to 13.37 mm) in good agreement with the observed (13.03 mm).  This is because 221 

the runs were all constrained by the prescribed large-scale advective forcing in 222 

temperature and water vapor.  223 

 224 

The C32 and C64 runs both used the same 4-km grid spacing, but the C64 simulation 225 

had slightly more convective and stratiform rainfall (Table 3).  The results also showed 226 

that both the C32 and C64 runs simulated the same 57% stratiform rainfall amount.  227 

The C128 and C256 cases both produced more convective but less stratiform rainfall 228 

and hence a slightly lower stratiform percentage (53%) than the C32 and C64 cases.  229 

The C256 experiment had the highest correlation (0.90) of all and a lower bias (0.23) 230 

than the C64 and C128 runs.  The C32 simulation had the lowest correlation (0.73) and 231 

a negative bias compared to the others.  232 

 233 
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Figure 1 shows time series of the domain-mean rainfall for the C32, C64, C128 and 234 

C256 simulations.  All four runs capture the observed temporal variation in rainfall, 235 

especially the heavy rainfall events (i.e., on November 23, 24, 25, 26, 27 and 28). 236 

However, the C32 run generally overestimates the peak intensity of these heavy rainfall 237 

events while underestimating their life span compared to the observations and other 238 

simulations.  The C64 and C128 runs are both better than the C32 case in this regard 239 

with C128 being slightly better than the C64 during the first 4 days of model 240 

integration.  The C256 simulation, however, clearly shows the best agreement with the 241 

observed temporal variation in domain mean surface rainfall in agreement with the high 242 

correlation and low bias shown in Table 3.  243 

 244 

Hovmoller diagrams of model-simulated hourly rainfall for the C32, C64, C128 and 245 

C256 simulations are shown in Fig. 2.  The C32 run produces short-lived, isolated 246 

convection with large rainfall intensities (especially between November 20-21 and 247 

November 25-28) compared to the other runs.  Its simulated domain-mean rainfall 248 

period is also shorter than the other cases as shown in the Fig. 1a.  The C256 simulation 249 

has more long-lived organized convection, and its simulated domain-mean rainfall is 250 

in very good agreement with the observed as shown in Fig. 1d.  In addition, the C256 251 

run produces finer, more-detailed structures than the C32.  The C128 run has slightly 252 

more long-lived, organized convection than does C64 between November 25 and 253 

November 27 (see Fig. 2 and Fig. 1c) and slightly better correlation overall (Table 3). 254 

 255 
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Figure 3 shows vertical cross sections of simulated radar reflectivity from the four 256 

CRM simulations.  In general, more complex cloud structures are seen in the C256 (1-257 

km resolution) and C128 (2-km resolution) simulation.  Convective cell structures 258 

appear broader for the C32 and C64 simulations (see Figs. 3a and b).  These results are 259 

in good agreement with Ooyama [2001].  The time series of maximum vertical velocity 260 

and maximum radar reflectivity are also examined (not shown).  The peak intensity of 261 

radar reflectivity is about 45-50 dBZ in all GMMF experiments (see Fig 3).  These 262 

values are located beneath the melting layer.  The maximum updraft (grid point value) 263 

is stronger (weaker) in the high (low)-resolution case as expected.  For example, the 264 

maximum updraft is about 8 m s-1 in the M32 configuration but reaches over 12 m s-1 265 

in the M256 case.  Another difference is that stronger updrafts last longer (shorter) in 266 

the M256 (M32) case as multi-convective cores are simulated in M256 (see Fig. 3).  267 

This result is consistent with the rainfall (Fig. 1). 268 

 269 

3.2 GMMF simulations 270 

 271 

GMMF simulations were conducted for two years, January 1, 2007 to December 31, 272 

2008.  These same two years were used to compare the GMMF M32 simulation with 273 

CloudSat products in Chern et al. [2016].  In this paper, GMMF-simulated rainfall 274 

characteristics will be compared for different model configurations.  The Global 275 

Precipitation Climatology Project (GPCP) [Adler et al., 2003] and two Tropical 276 

Rainfall Measuring Mission (TRMM) [Simpson et al., 1996] products [Huffman et al., 277 

2007, 2010] are used to evaluate model performance.  The GPCP data has global 278 



 12 

coverage at 2.5o resolution, the TRMM 3B43 merged product covers from 50oS to 50oN 279 

at 0.25o resolution, and the TRMM 3A25 Precipitation Radar (PR) gridded product 280 

covers from 38oS to 38oN at 0.5o resolution.  All datasets are averaged to the model 281 

grids at 2.0 o x 2.5o resolution for comparison.  282 

 283 

The GCE model configurations used in the M32, M64, M128 and M256 experiments 284 

are the same as those in the C32, C64, C128 and C256 simulations, respectively, except 285 

now the GCE models can interact with the global circulation model (GEOS).  286 

Therefore, they do not have the same large-scale advective forcing (or vertical shear of 287 

horizontal wind) as their counterparts.  Figure 4 shows the two-year mean surface 288 

rainfall simulated in the M32, M64, M128 and M256 runs.  The satellite surface rainfall 289 

estimates from the TRMM 3B42 and GPCP products  are also shown in Fig. 4 for 290 

comparison.  All of the MMF-simulated rainfall patterns are quite similar to each other 291 

and to the satellite retrievals.  For example, the minimum rain regions off the west 292 

coasts of North and South America and over subtropical Africa and the Atlantic are 293 

captured by all four simulations.  In addition, four major rainfall features/regions, such 294 

as the Intertropical Convergence Zone (ITCZ), South Pacific Convergence Zone 295 

(SPCZ), Indian Ocean and West Atlantic are also well captured by the GMMF runs.  296 

However, all four runs still simulate more rainfall than is estimated by satellite in these 297 

major rainfall regions.  However, the results clearly indicate that the M128 and M256 298 

runs produce less total rainfall over these regions than do the M32 and M64 runs, 299 

making them in better agreement with the satellite observations.  Figure 5 shows the 300 

zonal mean rainfall differences between the four GMMF simulations and GPCP and 301 
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TRMM.  The biggest differences between the simulations and satellites observations 302 

are over the Tropics.  The maximum zonal mean bias for the M256 simulation is 303 

noticeably less than for the M32 (1.4 mm day-1 vs. 2.2 mm day-1 compared to GPCP 304 

and 1.9 mm day-1 vs. 2.8 mm day-1 compared to TRMM in the Tropics).  Overall, the 305 

M256 run has the least difference in (zonal-mean) rainfall compared to both TRMM 306 

and GPCP.  The M64 and M128 runs also have smaller differences than does the M32.  307 

 308 

The total rainfall amount, its bias, root mean square error (RMSE) and correlation for 309 

the four GMMF experiments are shown in Table 4.  The convective and stratiform 310 

rainfall amount and stratiform percentage from each run are also shown.  The M256 311 

run has the lowest total rainfall amount, 2.83 (3.12) mm/day, the smallest bias 0.17 312 

(0.22) and RMSE 1.37 (1.42), and the highest spatial correlation 0.842 (0.857) 313 

compared to GPCP (TRMM) among all runs.  In contrast, the M32 simulation has the 314 

largest total rainfall amount, 2.93 (3.27) mm/day, the largest bias 0.27 (0.36) and 315 

RMSE 1.74 (1.85) as well as the smallest correlation 0.817 (0.825) of the runs relative 316 

to GPCP (TRMM).  The M64 simulation has a better bias, RMSE and correlation than 317 

the M32.  The M128 run produces the second best results and implies that CRMs with 318 

128 grid points could be embedded into the GMMF and still achieve better agreement 319 

(reduced bias/RMSE and increased correlation) with observed rainfall than the current 320 

default setup.  321 

 322 

The domain size of the CRM is typically chosen to be equal to or smaller than the 323 

parent GCM’s grid spacing (~2 degree) in an MMF setup such as with the M32, M64, 324 
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M128, and M256 experiments.  However, a CRM domain size of 256 km (~2 degrees) 325 

may be smaller than that necessary (i.e., 512 km) to adequately simulate tropical MCSs 326 

as suggested from previous stand-alone CRM simulations [Tompkins, 2000; Johnson 327 

et al., 2002; Petch and Gray, 2001].  Therefore, an additional M128 configuration with 328 

4 km grid spacing (i.e., a domain size of 512 km) was carried out; its global mean 329 

precipitation (not shown) has a bias/RMSE/correlation of 0.21/1.47/0.82, which are 330 

better than the GMMF runs (i.e., M32 and M64) with the same CRM grid spacing but 331 

smaller domains (i.e., 128 km and 256km).  This result indicates that expanding the 332 

CRM domain to 2 times that of a typical parent GCM grid box (2 x 2.5 degrees) can 333 

allow for more realistic MCS circulations and thereby reduce the artificial impacts of 334 

cyclic boundary conditions.  However, the precipitation statistics for this additional test 335 

(i.e., 512 km domain size) are slightly worse than the M128 run with a higher resolution 336 

but smaller domain.  337 

 338 

The M32 and M64 simulations typically produce one isolated cloud or cloud system as 339 

compared to the M128 and M256, which tend to produce more organized multi-cellar 340 

convective systems (see Fig. 6).  For example, Fig. 6(d) shows an organized MCS with 341 

strong updrafts at the leading edge of the system and weaker updraft trailing behind 342 

(associated with a decaying convective cell).  The updrafts are also stronger and 343 

penetrate to higher altitudes than those in the M32 and M64 runs (Figs. 6a and b). Note 344 

that propagating convective cell(s)/system(s) exit from one lateral boundary and re-345 

enter on the other side due to the cyclic lateral boundary conditions.  346 

 347 
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The GMMF results are quite consistent with those from the uncoupled GCE runs.  For 348 

example, the runs with 256 grid points (M256 and C256) have a low total rainfall bias 349 

and high spatial correlation compared to those with fewer grid points.  In addition, the 350 

M256 and C256 runs simulate more organized MCSs compared to the M32 and C32.  351 

Both the M128 and C128 runs also have better bias results and correlations compared 352 

to their M64 and C64 counterparts.  Overall, for both the GMMF and GCE model, 353 

simulations with the least number of model grid points have the worst performance in 354 

terms of simulated rainfall (Figs. 1, 4 and 5).  355 

 356 

All of the GCE and GMMF simulations produce a large stratiform rain percentage 357 

(from 51 to 63%, see Tables 3 and 4).  The M32 and M64 runs simulated lower 358 

stratiform rain fractions, 55 and 51%, respectively, than the M128 and M256.  These 359 

results are consistent with the more organized clouds/cloud systems in the M128 and 360 

M256 simulations.  On the other hand, the C128 and C256 runs produced 4% lower 361 

stratiform fractions than the C32 and C64 (Table 3) even though there are more 362 

organized convective systems in the C128 and C256 simulations (Fig. 3).  This result 363 

is one of the differences between the GMMF and GCE simulations.  Note that identical 364 

large-scale advective forcing with nudged horizontal winds was used to drive the un-365 

coupled GCE experiments.  Also, Lang et al. [2003] compared different convective-366 

stratiform separation methods in the GCE model.  Their results showed that the GCE-367 

based (used in this paper) separation method could produce a higher stratiform (or less 368 

convective) fraction compared to the radar reflectivity-based method [Steiner, 1995].  369 

 370 
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Only one MMF study [Cheng and Xu, 2011] showed that simulated surface rainfall 371 

(SPCAM3.5) was under-predicted compared to observations [Legates and Willmott, 372 

1990; see Fig. 11 in Cheng and Xu, 2011].  However, in that study, the results were not 373 

compared with TRMM and/or GPCP as in other MMF studies (shown in Table 1).   374 

Marchand and Ackerman [2010] conducted three SPCAM simulations with different 375 

horizontal resolutions/ vertical levels (i.e., 4 km/ L26, 1km/ L26, and 1km/ L52, 376 

respectively).  The 1-km simulations were only integrated for one month (November 377 

2006).  Their analysis only focused on cloud amount (not surface rainfall); they found 378 

the 1km/ L52 setup modestly improved the MMF-simulated low-cloud cover.   379 

Pritchard et al. [2014] also examined the impact of grid spacing on MJO dynamics in 380 

the SPCAM.  Three CRM configurations (128 km long with 32 columns, 64 km long 381 

with 16 columns and 32 km long with 8 columns) were integrated in SPCAM for a ten-382 

year period (1980-1990).  Their three simulations produced less rainfall on the equator 383 

and too much off of it (i.e., North Indian Ocean, Bay of Bengal, and northwestern 384 

tropical Pacific).  The two configurations with reduced CRM domain sizes produced 385 

more rainfall on the Equator and slightly less rainfall in the Indian Ocean and SPCZ 386 

(see Fig. 7 in their paper).  Pritchard et al.’s results differ from this study as all of the 387 

GMMF runs produce too much rainfall along the Equatorial ITCZ and over the SPCZ 388 

and Indian Ocean.  The differences could be caused by differences in the physics as 389 

well as the configuration tests between their study and this one. 390 

 391 

3.3 Process diagnostics 392 

 393 
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Luo and Stephens [2006] examined SPCAM simulations and suggested that a large 394 

convection-wind-evaporation feedback, partially caused by the two-dimensional 395 

geometry of the embedded CRMs in the global model, could cause the positive surface 396 

rainfall bias.  Kim et al. [2011] examined the relationships between intra-seasonal 397 

variability (ISV) and precipitation bias in AGCMs.  They also found that evaporation 398 

is larger in the stronger ISV models than in the weak ones.  This result is consistent 399 

with the feedback suggested by Luo and Stephens [2006].  However, they also found 400 

this feedback occurs in models with cumulus parameterization.  They suggested that 401 

other physical processes (i.e., air-sea interaction using ocean models) might cause this 402 

positive precipitation bias.   403 

 404 

Table 5 shows the evaporation rate (or latent heat flux) in mm day-1 from the four 405 

GMMF experiments.  It also shows the surface rainfall rate for comparison.  The 406 

observed precipitation rate, the evaporation rate over ocean, and the evaporation rate 407 

over land come from GPCP, OAFlux (Objectively Analyzed air-sea Fluxes; Yu and 408 

Weller, 2007), and FLUXNET [Baldocchi et al., 2001], respectively.  The OAFlux 409 

project uses objective analysis to synthesize measurements/estimates from various 410 

sources and provides surface fluxes and flux-related surface meteorology globally for 411 

ice-free oceans.  FLUXNET is a gridded flux product from a global network of more 412 

than 500 micrometeorological tower sites.  This gridded product is useful for model 413 

validation from local to global scales [Jung et al., 2009; Blyth et al., 2010].  All GMMF 414 

simulations in general overestimate surface precipitation and evaporation rates over 415 

ocean but underestimate them over land.  The results show that a higher evaporation 416 
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rate is associated with more surface rainfall over oceans.  For example, the M32 and 417 

M64 runs show more surface rainfall and higher surface evaporation rates than those 418 

for the M128 and 256 runs.  The surface evaporation rate is much lower over the deep 419 

Tropics (15o S to 15o N) for the M128 and M256 runs than for the M32 and M64.  On 420 

the other hand, more surface rainfall over land in the M128 and M256 runs corresponds 421 

to more evaporation over land.  However, the differences between the M32 and M64 422 

runs and the M128 and M256 runs are smaller over land than they are over ocean.   423 

 424 

Figure 7 shows mean surface evaporation (in mm day-1 for comparison with the surface 425 

rainfall) for the M32, M64, M128 and M256 simulations as well as for the combination 426 

of the OAFlux and FLUXNET products for comparison.  The results show a very 427 

similar spatial distribution for all four GMMF runs.  Peak evaporation is larger in the 428 

M32 simulation than in the other three runs.  These regional maxima are smaller in the 429 

M256 run than those in the M64 and M128 runs.  In terms of the zonal mean 430 

evaporation bias (Fig. 7f), the M32 simulation clearly has a higher evaporation bias 431 

from 15o S to 15o N than the other simulations.  It is worth noting that the areas of 432 

largest surface evaporation are not co-located with the areas of highest surface rainfall 433 

(Fig. 4).  For example, the areas of large surface evaporation are located well south and 434 

well north of the ITCZ and West Atlantic.  Also, large surface evaporation occurs south 435 

of the large surface rainfall over the Indian Ocean.  This suggests that local surface 436 

latent heat flux is not a major physical process with regard to the precipitation bias.  437 

 438 
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Low-level water vapor flux convergence, which is the integral of water vapor flux 439 

convergence from the surface to 700 hPa, was calculated to examine its relation to 440 

surface rainfall (Fig. 8).  The results show that all of the simulations have very similar 441 

spatial patterns that are also similar to their surface rainfall patterns.  Large values of 442 

water vapor flux convergence are co-located with the large surface rainfall regions.  For 443 

example, strong water vapor flux convergence occurs over the ITCZ, SPCZ, Indian 444 

Ocean and West Atlantic where the larger rainfall occurs (see Fig. 5).  In addition, low-445 

level water vapor flux convergence over land (South America and Africa) also 446 

coincides with areas of large surface rainfall.  The results indicate that there is a close 447 

relationship between low-level water vapor flux convergence and surface rainfall.  448 

Figure 8 also shows that the M32 (M256) simulation has the largest (smallest) low-449 

level water vapor flux convergence among all four runs.  Low-level water vapor flux 450 

convergence is mainly controlled by the large-scale circulation. 451 

 452 

Dynamic processes are also therefore examined to explain the differences between 453 

these runs.  Figure 9 shows annual average, zonal mean meridional mass stream 454 

function values and mean vertical pressure velocity from the M32 and M256 455 

simulations.  The meridional mass stream function, , is expressed as 456 

, 457 

where a is the Earth’s radius, g is the gravitational acceleration,  is the latitude, ps is 458 

the surface pressure, p is the pressure, and v is the zonal average meridional wind. The 459 

stream function values are assumed to be zero at the top and bottom boundaries to 460 

ensure mass conservation and a steady state solution to the continuity equation. Positive 461 

Y =
2pacos(j)

g
vdp

p

Ps

ò
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and negative stream function values represent counterclockwise and clockwise 462 

circulations, respectively, and their amplitude measures the strength of the circulation.  463 

The M32 and M256 average stream functions (Fig. 9) both show a roughly symmetric 464 

two-cell structure with a mutual ascending branch located north (~5º N) of the equator.  465 

The minimum/maximum values of mass stream function are -11.92/10.39 (x1010 kg s-466 

1) and -11.25/9.10 (x1010 kg s-1) for the M32 and M256 simulations, respectively.  467 

These results indicate that the strength of both the southern and northern Hadley 468 

circulations in the M32 run are stronger than those in the M256.  A stronger Hadley 469 

circulation in M32 allows for stronger low-level water vapor flux transport from the 470 

sub-tropics to the Tropics as shown in Fig. 8.    471 

 472 

The vertical velocity is clearly much stronger in the M32 simulation than in the M256 473 

with M64 and M128 in between for both tropical ocean and land regions (Figs. 10a and 474 

b).  There is a larger difference over ocean than over land.  These results are consistent 475 

with the rainfall (Fig. 4 and Table 5) with the M32 simulation having more surface 476 

rainfall than the M256.  Figure 10 also shows the vertical velocity in the subtropics 477 

over ocean and land.  There is stronger subsidence in the M32 run than in the M256 478 

with M64 and M128 again in between for both land and ocean, which is consistent with 479 

the subtropical surface rainfall patterns as well.  These results also suggest that the 480 

stronger subsidence in the sub-tropics could allow more warming and drying in the 481 

M32 run and consequently more surface fluxes (i.e., evaporation). 482 

 483 
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Donner et al. [2001] examined the impact of mesoscale effects in an atmospheric GCM.  484 

They incorporated both convective-scale vertical velocity and mesoscale effects into a 485 

cumulus parameterization scheme based on mass fluxes and found that the results were 486 

in better agreement with satellite observations (i.e., TRMM and NVAP – the NASA 487 

Water Vapor Project) if both convective and mesoscale effects are included.  Their 488 

results also indicated that mass fluxes are smaller when the mesoscale component is 489 

included.  This is in good agreement with our current results.   Donner et al. [2001] did 490 

not discuss the mesoscale effects on surface rainfall.   491 

 492 

The impact of mesoscale precipitation systems within global circulation models has 493 

been examined.  For example, Schumacher et al. [2004] studied the tropical dynamic 494 

response to latent heating estimates derived from the TRMM precipitation radar within 495 

an idealized simulation.  Their results showed that stratiform fraction plays an 496 

important role in shaping the structure of the large-scale tropical circulation response 497 

to precipitating cloud systems.  Cold pools (typically associated with convective 498 

systems) were considered in Del Genio et al. [2015] and do have an impact on the 499 

Madden-Julian oscillation (MJO) simulations (but entrainment from convection can 500 

determine whether or not a realistic MJO can be simulated).  But, they have more 501 

impact on upper-level cloudiness, which interacts with radiative heating [Del Genio et 502 

al., 2015].  Their model simulations were 30 days long.  503 

 504 

3.4 Sensitivity to reduced evaporative fluxes 505 

 506 
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Kim et al. [2011] have examined the relationship between intraseasonal variability and 507 

mean state bias in several GCMs as well as the relationship between surface 508 

evaporative fluxes and precipitation.  Their results showed a positive correlation 509 

between evaporative fluxes and precipitation.  The models with more evaporative 510 

fluxes simulated more precipitation.  They suggested that the over-estimated surface 511 

rainfall in GCMs is likely due to the prescribed SST lower boundary. 512 

 513 

To examine the role of air-sea interaction within climate simulation, Stan et al. [2010] 514 

coupled the SPCAM to a full-physics ocean model, POP (the Parallel Ocean Program).  515 

They found the coupled model eliminated excessive precipitation over the western 516 

Pacific during summer and produced a better simulation of the Asian monsoon 517 

circulation than the uncoupled SPCAM.  However, this improved simulation could also 518 

be due to the fact that the SSTs could deviate from observations in the coupled model.  519 

Stan et al. [2010] also showed there were mean SST cold biases of 1-2 K with an RMSE 520 

value of 2 K [Randall et al., 2016] in many locations.  These cold biases must have a 521 

large impact on the simulated surface evaporation, precipitation and circulation 522 

patterns.  To provide a more realistic air-sea interaction, Benedict and Randall [2011] 523 

coupled the SP-CAM to a simplified slab ocean model that was constrained to observed 524 

climatology.  Although the annual mean SST variations were only a few tenths of a 525 

degree from the observed SSTs, they found the organization and eastward propagation 526 

of the MJO to be more realistic than in the uncoupled SP-CAM.  However, the 527 

excessive annual mean precipitation in the tropics and western Pacific still existed.  528 

 529 
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To investigate the impact of SST cold biases of 1-2 K on surface evaporation, 530 

precipitation pattern, and the Hadley circulation, a simple sensitivity test was conducted 531 

using the M32 configuration but with the SSTs reduced (in oC) by 5%.  Surface 532 

evaporation is reduced compared to the control (M32) run (Fig. 11a and Fig. 7b), 533 

lowering both the bias and RMSE (bias from 0.477 to 0.319; RMES from 1.017 to 534 

0.782), while increasing the correlation from 0.816 to 0.937.  These statistics are quite 535 

comparable to the M256 simulation (i.e., a 0.345 bias, an RMSE of 0.781, and a 0.939 536 

correlation).  Nevertheless, the spatial distribution between this run and the M32 run is 537 

quite similar.  As surface evaporation is reduced, surface rainfall is also reduced 538 

compared to the M32 run (Fig. 11b and Fig. 4c) in better agreement with observations.  539 

The bias/RMSE/CORR for precipitation against GPCP observations is 540 

0.131/1.563/0.816 for the reduced SST scenario.  The results are again quite similar to 541 

those for the M256 simulation (see Table 4).  The zonal meridional mass stream 542 

function (Fig. 11d) has minimum/maximum values of -12.99/9.79 (x1010 kg s-1), which 543 

are smaller than those [-11.92/10.39 (x1010 kg s-1)] for the M32 experiment (Fig. 9a).  544 

This demonstrates that the southern (northern) branch of the Hadley circulation is 545 

stronger (weaker) in the sensitivity test versus the control.  The reduction of tropical 546 

precipitation in the SST-5% experiment is associated with smaller low-level moisture 547 

flux convergence (Fig. 11c).  This can be attributed mainly to a drier lower atmosphere 548 

as a result of weaker surface latent heat fluxes in the SST-5% sensitivity experiment.  549 

These results show that the SST cold biases in a coupled model could have a significant 550 

influence on the large-scale circulation and precipitation distributions through 551 
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convection-wind-evaporation feedback [Luo and Stephens, 2006] in a 552 

superparameterization model system. 553 

 554 

4. Summary and conclusions 555 

 556 

Almost all MMFs (including the GMMF) have used 32 or 64 grid points with 4 km 557 

grid spacing in their embedded CRMs and overestimated precipitation (surface rainfall) 558 

in the Tropics.  In this study, the major physical processes are examined and identified 559 

that cause the overestimated rainfall in the GMMF.  Both GCE and GMMF simulations 560 

are conducted with different numbers of CRM grid points and spacing.  In addition, a 561 

sensitivity test with the GMMF using reduced SSTs was conducted.  The main results 562 

from this modeling study are as follows: 563 

 564 

 Overall, the GCE setup with the most grid points (i.e., C256 case) and highest 565 

resolution (1 km) has the lowest bias and highest correlation in terms of surface 566 

rainfall.  In contrast, the GCE setup with the fewest grid points (i.e., the C32 567 

configuration) and lower resolution (4 km) has the lowest correlation with surface 568 

rainfall.  The other two simulations (i.e., C64 and C128) have biases and 569 

correlations in between the C256 and C32 runs.   570 

 The GCE setup with more grid points (C256) produces more long-lived, organized 571 

convective systems and a temporal rainfall variation in very good agreement with 572 

observations.  This result is in good agreement with previous CRM simulations that 573 

a larger domain is required to better simulate organized convection [i.e., Johnson 574 

et al., 2002; Tompkins, 2000; Petch and Gray, 2001]. 575 
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 The GCE configuration with the least grid points (C32) simulates short–lived, 576 

isolated convection.  Its simulated domain-mean rainfall also lasts for a shorter time 577 

period and is stronger compared to the other runs and to observations.   578 

 Overall, the GMMF simulations show very similar surface rainfall patterns and 579 

capture the major weather phenomena, such as a single ITCZ and SPCZ and large 580 

rainfall over the Indian Ocean, S. America and Eastern Atlantic.  However, all of 581 

the GMMF simulations over-estimated the total rainfall amount compared to 582 

satellite estimates from TRMM and GPCP. 583 

 However, the GMMF with more CRM grid points and higher resolution (M256) 584 

has a lower bias, smaller RMSE and higher correlation versus surface rainfall 585 

compared to those with fewer grid points and lower resolution (i.e., M32, M64 and 586 

M128).  Overall, the M256 and M128 simulations are in better agreement with 587 

observations than the M32 and M64. 588 

 The M256 simulation produced more organized convective systems than the M32 589 

and M64 with the M32 setup resulting in more isolated convection.  These GMMF 590 

results are consistent with the GCE model (non-coupled) simulations.  591 

 The GMMF simulations indicate that convection-wind-evaporation feedback is a 592 

key process for tropical precipitation.  Globally, more (less) surface evaporation 593 

produces more (less) surface rainfall.  This result is in good agreement with 594 

previous model results [Luo and Stephens, 2006 and Kim et al., 2001].  However, 595 

maximum surface evaporation occurs in sub-tropical regions.  It is the large-scale 596 

low-level circulation that transports the moisture from the subtropics to the tropical 597 

ITCZs and SPCZ where the heavy rainfall occurs.  598 
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 The mean vertical velocity in the tropical region is weaker (stronger) for the M256 599 

(M32) configuration.  This is consistent with the results of Donner et al. [2001] 600 

wherein mass fluxes are stronger when the mesoscale effect is not considered in the 601 

cumulus parameterization.   602 

 The stronger upward motion in the Tropics can allow stronger subsidence in the 603 

sub-tropics.  The warm, dry air associated with the subsidence that can then allow 604 

larger surface evaporation.. 605 

 The upward motion in the Tropics also affects the Hadley circulation. A stronger 606 

(weaker) Hadley circulation allows more (less) large-scale low-level water vapor 607 

to be transported from the subtropics to the Tropics.   608 

 Surface evaporation is weaker in the GMMF sensitivity test wherein SSTs were 609 

reduced by 5% compared to the control simulation (M32).  Consequently, the 610 

tropical rainfall is also reduced due to smaller low-level moisture flux convergence 611 

associated with a drier low atmosphere.  These results suggest that the cold SST 612 

biases in a coupled model can play an important role in the global rainfall 613 

distribution. 614 

 615 

One of the key findings in this paper is that MCSs can be simulated in both the GCE 616 

and the embedded GCEs in the GMMF.  But, it requires a relatively large number of 617 

CRM grid points.  For example, the GMMF M256 simulation needs much more 618 

computation resources compared to the M32.  Its computational requirement is similar 619 

to a GCRM at ~10 km grid spacing.  The next step would be to compare the 620 
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performance of the M256 configuration with the 7-km GEOS5 model (almost all global 621 

cloud-permitting models do not use 1 km grids, but more typically 3.5, 7 and 14 km).   622 

 623 

One of the major limitations of MMFs is the use of a 2D CRM with cyclic lateral 624 

boundary conditions.  Another limitation is that the MMF-embedded CRM zonal 625 

momentum is usually nudged to the large-scale model’s momentum.  Both could 626 

directly affect the large-scale organization of convection [Moncrieff, 2004].  For 627 

example, only one type of MCS (squall line) can be simulated by a 2D CRM.  In 628 

addition, horizontal momentum could be counter-gradient for some types of convective 629 

organization [LeMone et al., 1984; Soong and Tao, 1984; Moncrieff, 2004].  Only two 630 

recent MMFs (Tulich, [2015] and Cheng and Xu, [2014]) have considered the 631 

convective momentum transport (CMT).  Both approaches utilize the low-level 632 

(surface to 4 km level) GCM wind shear to determine the orientation of the 2D CRM.  633 

For example, the orientation of the CRM can be perpendicular to the shear for 634 

organized (deep) convection or parallel to it for shallow clouds.  However, the GCM 635 

resolution is quite coarse and the low-level wind shear may not be a good indicator of 636 

the convective organization.  Nevertheless, the inclusion of CMT does improve the 637 

horizontal distribution of surface rainfall but not its total amount (see Fig. 16 in Tulich, 638 

[2015] and Fig. 1 Cheng and Xu, [2014]).  This topic is an on-going area of research 639 

and is beyond the scope of this paper. 640 
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 956 
 

Reference 

GCM 

resolution 

CRM (# of grid/ 

resolution) 

Period of model 

integration 

Total Rainfall 

(W. Pacific and 

tropics) 

 

Khairoutdinov et al.  

[2005] 

 

T42 (~300 km 

 

64/4 km 

8 x 8 /4km 

 

500 days 

Overestimated for 

2D 

Better but 

underestimated for 

3D with momentum  

Luo and Stephens [2006] T42 (~300 km) 64/ 4 km 10 months  Overestimated 

Ovtchinnikov et al. [2006] 

 

T42 (~300 km) 64/4 km 1999  

(SGP/TWP) 

Over- and under-

estimated 

Wyant et al. [2006, 2009] 2.8o x 2.8o 32/4 km 

 

3.67, 5.25 year 

(+2K SST) 

N.A. 

DeMott et al. [2007, 2010] T42 (~300 km) 64/4 km 500 days 

1986-1999 

Overestimated 

Zhang et al. [2008] 2.0o x 2.5o 64/4 km 1998-2002 Overestimated 

 

Khairoutdinov et al.  

[2008] 

Kim et al. [2011] 

 

T42 (~300 km) 

 

32/4 km 

 

1985-2004 

 

Overestimated 

 

Benedict and Randall 

[2009] 

2.5o x 2.5o 32/4 km 

 

1985-2004 Overestimated 

 

Theyer-Calder and 

Randall [2009] 

2.0o x 2.5o 64/4 km 1998-2002 Overestimated 

 

Marchand and Ackerman 

[2009] 

2.0o x 2.5o 64/4 km  1997-2002 Overestimated 

Pritchard and Somerville 

[2009] 

T42 (~300 km) 32/4 km 2000-2006 Overestimated 

Zhu et al. [2009] T42 (~300 km) 32/4 km 1998-2002 Overestimated 

Marchand and Ackerman 

[2010] 

2.0o x 2.5o 64/4 km and 

64/1 km 

1 year and  

1 month 

N.A. 

Stan et al. [2010] T42 (~300 km) 32/ 4km 22 years Overestimated 

 

Stan et al. [2010]* 

Dirmeyer et al. [2012] 

T42 (~300 km) 

(CCSM) 

32/4 km 1979-2006 

1998-2009 

Overestimated 

 

Benedict and Randall 

[2011] 

2.8o x 2.8o 

1D Slab Ocean 

32/4 km 1999-2004 Overestimated  

 

 

Cheng and Xu [2011] 

 

T21 (~400 km) 

 

32/4 km 

 

1990-1992 

Underestimated 

(Compared to 

Legates and 

Willmott, 1990) 

 

DeMott et al. [2011] 

T42 (~300 km) 

(CCSM&CAM) 

 

32/4 km 

 

1986-2003 

Overestimated 

(Summer) 

(Less in CCSM) 

Pritchard et al. [2011] 1.9o x 2.5o  64/1km 3 months Overestimated 

(USA) 

Wang et al. [2011, 2012, 

2015] 

1.9o x 2.5o  32/4 km 32, 52 months Overestimated (no 

aerosol) 

Goswami et al. [2011, 

2013] 

T42 (~300 km) 32/4 km 1997-2008 Overestimated 

Rosa et al. [2012] 

Rosa and Collins [2013] 

1.9o x 2.5o  

2.0o x 2.5o 

64/2 km 1996-2006 

1996-2001 

Overestimated 

Li et al. [2012] 1.875o x 2.0o 64/ 2 km 1996-2001 Overestimated 

(USA) 
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Wyant et al. [2012] 2.8o x 2.8o 32/4 km 

N/S 

Climate (4 x CO2) N.A. 

 

Kooperman et al. [2012] 

1.9o x 2.5o  

with nudging 

and aerosol 

 

32/4 km 

 

1 year 

 

Overestimated 

 

DeMott et al. [2013] T42 (~300 km) 

(CCSM) 

32/4 km 1998-2010 Overestimated 

 

Xu and Cheng [2013a,b] 1.9 o x 2.5o 32/4 km Last 9 year of 10 

year integration 

Overestimated 

 

Cheng and Xu [2014] T21 (~400km) 32/4 km 1990-1992 See Text 

Pritchard and Bretherton 

[2014] 

T42 (~300 km) 32/4 km 1980-1986 N.A. 

Stan and Xu [2014] 1.9o x 2.5o  

0.9o x1.25o 

32/4 km 

32/3 km 

1979-2010 Overestimated 

 

 

Pritchard et al. [2014] 

 

T42 (~300 km) 

32/4 km 

16/4km 

8/4km 

 

1980-1990 

 

Overestimated 

Tao et al. [2009] 2.5o x 2.0o 32/4 km 1998 - 1999 Overestimated 

Tao et al. [2014] 2.5o x 2o 32/4 km 1998 - 2013 Overestimated 

Mohr et al. [2013] 2.5o x 2o 32/4 km 2007-2008 Overestimated 

Kidd et al. [2016] 2.5o x 2.0o 64/4 km  2007 (nudged to 

ERA-Interim) 

Underestimated 

Chern et al. [2016] 2.5o x 2.0o 32/4 km 2007-2008 Overestimated 

Matsui et al. [2016] 2.5o x 2.0o 64/4 km June 2008 Overestimated 

 

Tao and Chern [2016] 

the present paper 

 

2.5o x 2.0o 

32/4 km 

64 /4 km 

128/2 km 

256/1 km 

 

2007-2008 

 

Overestimated 

 957 
Table 1  Key MMF papers and their model configuration in terms of GCM resolution 958 

and number of embedded CRM grid columns and their resolution.  The period 959 
of model integration and the precipitation bias are also shown. 960 

 961 
* See Dirmeyer et al. [2012] 962 
  963 
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 964 
 CRM grid 

columns 

CRM grid 

spacing 

CRM 

domain size 

GEOS grid 

spacing 

Time 

Integration 

M32 32 4 km 128 km 2x2.5 2 years 

M64 64 4 km 256 km 2x2.5 2 years 

M128 128 2 km 256 km 2x2.5 2 years 

M256 256 1 km 256 km 2x2.5 2 years 

C32 32 4 km 128 km No 10 days 

C64 64 4 km 256 km No 10 days 

C128 128 2 km 256 km No 10 days 

C256 256 1 km 256 km No 10 days 

 965 
Table 2  Experiment name and model configuration for 4 GMMF (M32, M64, M128 966 

and M256) and 4 GCE simulations (C32, C64, C128, and C256).  The GEOS 967 
grid spacing is 2.5o and 2.0o in longitude and latitude, respectively. 968 
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 970 
 C32 C64 C128 C256 

Convective (mm day-1) 5.52 5.63 6.35 6.25 

Stratiform (mm day-1) 7.34 7.67 7.04 7.01 

Stratiform (%) 57 57 53 53 

Total Rainfall (mm day-1) 12.86 13.37 13.39 13.26 

Correlation 0.73 0.79 0.84 0.90 

Bias (mm day-1) -0.17 0.33 0.36 0.23 

 971 
Table 3   Convective, stratiform, and total rainfall (in mm day-1), the stratiform fraction 972 

(%), temporal correlation and domain mean rainfall bias for the C32, C64, 973 
C128 and C256 experiments. 974 

 975 
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 M32 M64 M128 M256 

Global total Precipitation (mm day-1)  

(90°S-90°N) 

2.93 2.89 2.86 2.83 

Tropical rainfall (mm day-1)  

(38°S-38°N) 

3.27 3.20 3.17 3.12 

Tropical convective rainfall 

(mm day-1) (38°S-38°N) 

1.466 1.568 1.324 1.169 

Tropical stratiform rainfall 

(mm day-1) (38°S-38°N) 

1.804 1.637 1.849 1.956 

Tropical stratiform percentage (%)  

(38°S-38°N) 

55 51 58 63 

Correlation 

(GMMF and GPCP) 

0.817 0.814 0.839 0.842 

Correlation 

(GMMF and TRMM 3A25) 

0.825 0.825 0.851 0.857 

Bias (vs GPCP) 0.27 0.23 0.20 0.17 

Bias (vs TRMM 3A25) 0.36 0.30 0.26 0.22 

RMSE (vs GPCP) 1.74 1.66 1.47 1.37 

RMSE (vs TRMM 3A25) 1.85 1.75 1.54 1.42 

 977 
Table 4 Total global precipitation, tropical rainfall and its convective and stratiform 978 

components (in mm day-1) and stratiform percentage from the M32, M64, 979 
M128 and M256 experiments.  Two sets of spatial correlation, bias, and root-980 
mean-square error (RMSE) are computed between the GMMF simulations 981 
and TRMM 3A25 (38°S - 38°N) and GMMF simulations and GPCP (90°S - 982 
90°N) products, respectively. 983 
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 986 

 observations  M32 M64 M128 M256  

Global total precipitation rate  

(mm day-1) 

2.659 2.931 2.885 2.860 2.830 

Global total precipitation rate  

(mm day-1) from ocean 

2.001 2.424 2.359 2.326 2.293 

Global total precipitation rate  

(mm day-1) from land 

0.662 0.507 0.526 0.534 0.537 

Precipitation rate (mm day-1) 

over tropical ocean (15oS-15oN) 

3.769 5.782 5.611 5.380 5.248 

Global total sfc evaporation rate  

(mm day-1) 

2.708 2.979 2.923 2.892 2.858 

Global total sfc evaporation rate  

(mm day-1) from ocean 

2.350 2.702 2.633 2.598 2.556 

Global total sfc evaporation rate 

 (mm day-1) from land 

0.382 0.277 0.290 0.294 0.302 

Sfc evaporation rate (mm day-1) over 

tropical ocean (15oS -15oN) 

3.592 5.255 4.931 4.815 4.686 

 987 
Table  5 GMMF-simulated global and regional mean surface precipitation and 988 

evaporation rates (mm day-1).  Observed precipitation and evaporation rates 989 
over ocean and the evaporation rate over land come from GPCP, OAFlux, 990 
and FLUXNET, respectively.  For surface evaporation, the same OAFlux 991 
observation points over ocean and FLUXNET points over land are used in 992 
the GMMF calculations (i.e., observed missing points are omitted in the 993 
GMMF). 994 
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 996 

 997 
 998 
Fig. 1  Time series of GCE domain mean surface rainfall (mm day-1) for the a) C32, 999 

b) C64, c) C128 and d) C256 experiments.  Thick solid lines show the 1000 
observed domain mean surface rainfall from the DYNAMO field campaign. 1001 

  1002 
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 1003 

 1004 
 1005 
Fig. 2 Hovmoller diagrams of GCE model-simulated surface rainfall rate (mm h-1) 1006 

for the a) C32, b) C64, c) C128 and d) C256 experiments. 1007 
  1008 
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 1009 

 1010 
Fig. 3  CRM-simulated radar reflectivity (dBZ, color shading) and vertical velocity 1011 

(m s-1, contours) at 23 UTC 22 November 2011 (near the time of the peak 1012 
observed rainfall) for the sensitivity runs a) C32, b) C64, c) C128, and d) 1013 
C256.  1014 
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 1017 

 1018 
 1019 

Fig. 4  Two-year (2007-2008) mean precipitation rates (mm day-1) from a) GPCP 1020 
and b) TRMM 3B43 observations and GMMF simulations for the c) M32, d) 1021 
M64, e) M128, and f) M256 experiments.  1022 
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 1024 

 1025 
 1026 
Fig. 5   GMMF mean zonal precipitation rate biases (mm day-1) relative to a) GPCP 1027 

and b) TRMM 3B43 observations.  Red, light-blue, green and dark-blue lines 1028 
denote the M32, M64, M128, and M256 experiments, respectively. 1029 
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 1031 

 1032 
Figure 6  GMMF-simulated radar reflectivity (dBZ, color shading) and vertical 1033 

velocity (m s-1, contours) at the maximum precipitation time for a GCM grid 1034 
point at (76°E, 2°N), which is near the DYNAMO field campaign site (76°E, 1035 
2°N), in December 2007 for the a) M32, b) M64, c) M128, and d) M256 1036 
experiments.  The MCSs/squall lines propagate westward except for the M32 1037 
case. 1038 
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 1040 

 1041 
 1042 
Figure 7  Two-year (2007-2008) mean surface evaporation rate (mm day-1) from a) 1043 

the combination of OAFlux (over ocean) and FLUXNET (over land) 1044 
observations and the b) M32, c) M64, d) M128, e) M256 simulations.  The 1045 
GMMF zonal mean biases are given in f) with red, light-blue, green, and 1046 
dark-blue lines for the M32, M64, M128, and M256 experiments, 1047 
respectively. 1048 
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 55 

 1050 
 1051 
Figure 8  Annual mean low-level (i.e., surface to 700 hPa) moisture flux convergence 1052 

(x 10-5 g g-1 s-1) from the a) M32, b) M64, c) M128, and d) M256 GMMF 1053 
experiments.  The mean moisture flux convergence/divergence amplitude 1054 
over the Tropics (15°S - 15°N) is also given at the top of each plot. 1055 
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 1058 

 1059 
Figure 9   Annual average zonal mean meridional mass stream function values 1060 

(contours) overlapped with mean vertical pressure velocity (color shading) 1061 
from the a) M32 and b) M256 GMMF simulations.  Units for mass stream 1062 
function and vertical pressure velocity are 1010 kg s-1 and 1.0-3 Pa s-1, 1063 
respectively.  Positive (solid contours) and negative (dashed contour) 1064 
stream function values represent counterclockwise and clockwise 1065 
circulations, respectively. 1066 
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 1070 

 1071 
 1072 
Figure 10   Two-year (2007-2008) mean vertical pressure velocity (1.0-3 Pa s-1) for 1073 

GCM model cells with updrafts from the M32, M64, M128, and M256 1074 
GMMF simulations over a) the Tropics (15°S-15°N), b) tropical ocean, c) 1075 
tropical land and for GCM model cells with downdrafts over d) the 1076 
subtropics (24°S/N – 38°S/N), e) subtropical ocean, and f) subtropical land. 1077 
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 1079 

 1080 
 1081 
Figure 11 Two-year (2007-2008) annual mean a) evaporation rate (mm day-1), b) 1082 

precipitation rate (mm day-1), c) low-level moisture flux convergence (x 1083 
10-5 g g-1 s-1), and d) zonal mean meridional mass stream function values 1084 
(contours) overlapped with mean vertical pressure velocity (color shading) 1085 
from the GMMF sensitivity experiment with SSTs (in C) reduced by 5%.  1086 
Units for mass stream function and vertical pressure velocity are 1010 kg s-1087 
1 and 1.0-3 Pa s-1, respectively.  1088 

 1089 


